Publications

Missing data publications

 

Eekhout, I., van de Wiel, M.A., Heymans, M.W. (2017). Methods for significance testing of categorical covariates in logistic regression models after multiple imputation: power and applicability analysis. BMC Medical Research Methodology, 17(1):129. Pubmed Link

 

Eekhout, I. de Vet, H.C.W., de Boer, M.R., Twisk, J.W.R., Heymans, M.W. (2016). Passive imputation and parcel summaries are both valid to handle missing items in studies with multi-item scales. Statistical Methods for Medical Research. Jun 22. Epub. Pubmed link

 

MacNeil-Vroomen, J., Eekhout, I. , Dijkgraaf, M.G., Van Hout, H., De Rooij, S.E. ,  Heymans, M.W.,  Bosmans, J.E., (2016) Multiple imputation strategies for zero-inflated cost data in economic evaluations: which method works best? European Journal of Health Economics, 17(8):939-950. Pubmed link

 

Eekhout, I., Enders, C.K., Twisk, J.W.R., De Boer, M.R., de Vet, H.C.W., Heymans, M. W. (2015). Longitudinal data analysis with auxiliary item information to handle missing questionnaire data. Journal of Clinical Epidemiology, 68(6):637-645.

Pubmed link 

Eekhout, I., Reijnen, A., Vermetten, E., Geuze, E.,
(
under review
). The change in
posttraumatic stress symptoms after deployment to A
fghanistan: a 5 year follow-up.
Lancet Psychiatry

Eekhout, I., Enders, C.K., Twisk, J.W.R., De Boer, M.R., de Vet, H.C.W., Heymans, M. W. (2015). Analyzing Incomplete Item Scores in Longitudinal Data by Including Item Score Information as Auxiliary Variables. Structural Equation Modeling: A Multidisciplinary Journal, 00, 1-15.

Link  Mplus Manual for including auxiliary item information

 

Eekhout, I. (2014). Don't Miss Out! Incomplete data can contain valuable information. PhD Dissertation.

ISBN: 978-90-5335-964-8 Link

 

 

Eekhout, I., de Vet, H.C.W., Twisk, J.W.R., Brand, J.P.L., de Boer, M.R., & Heymans, M.W. (2013). Missing data in a multi-item instrument were best handled by multiple imputation at the item score level. Journal of Clinical Epidemiology, 67(3), 335-342. Pubmed link  R Manual for making missing data

 

Eekhout, I., de Boer, M.R., Twisk, J.W., de Vet, H.C., & Heymans, M.W. (2012). Missing data: a systematic review of how they are reported and handled. Epidemiology, 23(5), 729-732. Pubmed link 

Rater agreement publications

 

de Vet, H.C.W., Mullender, M.G., Eekhout, I. (2017). Specific agreement on ordinal and multiple nominal outcomes can be calculated for more than two raters. Journal of Clinical Epidemiology, Dec 4 Epub. Pubmed Link.

 

de Vet, H.C.W., Dikmans, R.E., Eekhout, I. (2017). Specific agreement on dichotomous outcomes can be calculated for more than two raters. Journal of Clinical Epidemiology, 83:85-89. Pubmed link  

 

Longitudinal modelling publications

Eekhout, I., Geuze, E., Vermetten, E. (2016) The long-term burden of military deployment on the halth care system. Journal of Psychiatric Research, 79:78-85. Pubmed link 

 

Eekhout, I., Reijnen, A., Vermetten, E., Geuze, E., (2016). The change in posttraumatic stress symptoms after deployment to Afghanistan: a 5 year follow-up. Lancet Psychiatry, 3(1):58-64.

 

Link

Other publications

 

Terluin, B., Eekhout, I., Terwee, C.B. (2017). The anchor-based minimal important change, based on receiver operating characteristic analysis or predictive modelling, may need to be adjusted for the proportion of improved patients. Journal of Clinical Epidemiology. 93:90-100. Pubmed link

 

Terluin, B., Eekhout, I., Terwee, C.B., de Vet, H.C.W. (2015). Minimal important change (MIC) based on a predictive modeling aproach was more precise than MIC based on ROC analysis. Journal of Clinical Epidemiology, Mar 28.